

pytest-trio: Pytest plugin for trio

This is a pytest plugin to help you test projects that use Trio [https://trio.readthedocs.io/], a friendly library for concurrency
and async I/O in Python. Features include:

	Async tests without the boilerplate: just write async def
test_whatever():

	Useful fixtures included: use autojump_clock for easy
testing of code with timeouts, or nursery to easily set up
background tasks.

	Write your own async fixtures: set up an async database connection
or start a server inside a fixture, and then use it in your tests.

	If you have multiple async fixtures, pytest-trio will even do
setup/teardown concurrently whenever possible. (Though honestly,
we’re not sure whether this is a good idea or not and might remove
it in the future. If it makes your tests harder to debug, or
conversely provides you with big speedups, please let us know [https://github.com/python-trio/pytest-trio/issues/57].)

	Integration with the fabulous Hypothesis [https://hypothesis.works/] library, so your async tests can use
property-based testing: just use @given like you’re used to.

	Support for testing projects that use Trio exclusively and want to
use pytest-trio everywhere, and also for testing projects that
support multiple async libraries and only want to enable
pytest-trio’s features for a subset of their test suite.

Vital statistics

	Install: pip install pytest-trio

	Documentation: https://pytest-trio.readthedocs.io

	Issue tracker, source code: https://github.com/python-trio/pytest-trio

	License: MIT or Apache 2, your choice

	Contributor guide: https://trio.readthedocs.io/en/latest/contributing.html

	Code of conduct: Contributors are requested to follow our code of
conduct [https://trio.readthedocs.io/en/latest/code-of-conduct.html] in
all project spaces.

	Quickstart
	Enabling Trio mode and running your first async tests

	Trio’s magic autojump clock

	Async fixtures

	Running a background server from a fixture

	Reference
	Trio mode

	Trio fixtures

	An important note about yield fixtures

	Concurrent setup/teardown

	Handling of ContextVars

	Built-in fixtures

	Integration with the Hypothesis library

	Release history

Indices and tables

	Index

	Module Index

	Search Page

	Glossary [https://trio.readthedocs.io/en/stable/glossary.html#glossary]

Quickstart

Enabling Trio mode and running your first async tests

Note

If you used cookiecutter-trio [https://github.com/python-trio/cookiecutter-trio] to set up
your project, then pytest-trio and Trio mode are already
configured! You can write async def test_whatever(): ... and it
should just work. Feel free to skip to the next section.

Let’s make a temporary directory to work in, and write two trivial
tests: one that we expect should pass, and one that we expect should
fail:

test_example.py
import trio

async def test_sleep():
 start_time = trio.current_time()
 await trio.sleep(1)
 end_time = trio.current_time()
 assert end_time - start_time >= 1

async def test_should_fail():
 assert False

If we run this under pytest normally, then we get a strange result:

$ pytest test_example.py

======================== test session starts =========================
platform linux -- Python 3.6.5, pytest-3.6.3, py-1.5.4, pluggy-0.6.0
rootdir: /tmp, inifile:
collected 2 items

test_example.py .. [100%]

========================== warnings summary ==========================
test_example.py::test_sleep
 .../_pytest/python.py:196: RuntimeWarning: coroutine 'test_sleep' was never awaited
 testfunction(**testargs)

test_example.py::test_should_fail
 .../_pytest/python.py:196: RuntimeWarning: coroutine 'test_should_fail' was never awaited
 testfunction(**testargs)

-- Docs: http://doc.pytest.org/en/latest/warnings.html
================ 2 passed, 2 warnings in 0.02 seconds ================

So test_sleep passed, which is what we expected… but
test_should_fail also passes, which is strange. And it says that
the whole test run completed in 0.02 seconds, which is weird, because
test_sleep should have taken at least second to run. And then
there are these strange warnings at the bottom… what’s going on
here?

The problem is that our tests are async, and pytest doesn’t know what
to do with it. So it basically skips running them entirely, and then
reports them as passed. This is not very helpful! If you see warnings
like this, or if your tests seem to pass but your coverage reports
claim that they weren’t run at all, then this might be the problem.

Here’s the fix:

	Install pytest-trio: pip install pytest-trio

	In your project root, create a file called pytest.ini with
contents:

[pytest]
trio_mode = true

And we’re done! Let’s try running pytest again:

$ pip install pytest-trio

$ cat <<EOF >pytest.ini
[pytest]
trio_mode = true
EOF

$ pytest test_example.py
======================== test session starts =========================
platform linux -- Python 3.6.5, pytest-3.6.3, py-1.5.4, pluggy-0.6.0
rootdir: /tmp, inifile: pytest.ini
plugins: trio-0.4.2
collected 2 items

test_example.py .F [100%]

============================== FAILURES ==============================
__________________________ test_should_fail __________________________

 async def test_should_fail():
> assert False
E assert False

test_example.py:7: AssertionError
================= 1 failed, 1 passed in 1.05 seconds =================

Notice that now it says plugins: trio, which means that
pytest-trio is installed, and the results make sense: the good test
passed, the bad test failed, no warnings, and it took just over 1
second, like we’d expect.

Trio’s magic autojump clock

Tests involving time are often slow and flaky. But we can
fix that. Just add the autojump_clock fixture to your test, and
it will run in a mode where Trio’s clock is virtualized and
deterministic. Essentially, the clock doesn’t move, except that whenever all
tasks are blocked waiting, it jumps forward until the next time when
something will happen:

Notice the 'autojump_clock' argument: that's all it takes!
async def test_sleep_efficiently_and_reliably(autojump_clock):
 start_time = trio.current_time()
 await trio.sleep(1)
 end_time = trio.current_time()
 assert start_time - end_time == 1

In the version of this test we saw before that used real time, at the
end we had to use a >= comparison, in order to account for
scheduler jitter and so forth. If there were a bug that caused
trio.sleep() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.sleep] to take 10 seconds, our test wouldn’t have noticed.
But now we’re using virtual time, so the call to await
trio.sleep(1) takes exactly 1 virtual second, and the == test
will pass every time. Before, we had to wait around for the test to
complete; now, it completes essentially instantaneously. (Try it!)
And, while here our example is super simple, its integration with
Trio’s core scheduling logic allows this to work for arbitrarily
complex programs (as long as they aren’t interacting with the outside
world).

Async fixtures

We can write async fixtures:

@pytest.fixture
async def db_connection():
 return await some_async_db_library.connect(...)

async def test_example(db_connection):
 await db_connection.execute("SELECT * FROM ...")

If you need to run teardown code, you can use yield, just like a
regular pytest fixture:

DB connection that wraps each test in a transaction and rolls it
back afterwards
@pytest.fixture
async def rollback_db_connection():
 # Setup code
 connection = await some_async_db_library.connect(...)
 await connection.execute("START TRANSACTION")

 # The value of this fixture
 yield connection

 # Teardown code, executed after the test is done
 await connection.execute("ROLLBACK")

If you need to support Python 3.5, which doesn’t allow yield
inside an async def function, then you can define async fixtures
using the async_generator [https://async-generator.readthedocs.io/en/latest/reference.html]
library – just make sure to put the @pytest.fixture above the
@async_generator.

Running a background server from a fixture

Here’s some code to implement an echo server. It’s supposed to take in
arbitrary data, and then send it back out again:

async def echo_server_handler(stream):
 while True:
 data = await stream.receive_some(1000)
 if not data:
 break
 await stream.send_all(data)

Usage: await trio.serve_tcp(echo_server_handler, ...)

Now we need to test it, to make sure it’s working correctly. In fact,
since this is such complicated and sophisticated code, we’re going to
write lots of tests for it. And they’ll all follow the same basic
pattern: we’ll start the echo server running in a background task,
then connect to it, send it some test data, and see how it responds.
Here’s a first attempt:

Let's cross our fingers and hope no-one else is using this port...
PORT = 14923

Don't copy this -- we can do better
async def test_attempt_1():
 async with trio.open_nursery() as nursery:
 # Start server running in the background
 nursery.start_soon(
 partial(trio.serve_tcp, echo_server_handler, port=PORT)
)

 # Connect to the server.
 echo_client = await trio.open_tcp_stream("127.0.0.1", PORT)
 # Send some test data, and check that it gets echoed back
 async with echo_client:
 for test_byte in [b"a", b"b", b"c"]:
 await echo_client.send_all(test_byte)
 assert await echo_client.receive_some(1) == test_byte

This will mostly work, but it has a few problems. The most obvious one
is that when we run it, even if everything works perfectly, it will
hang at the end of the test – we never shut down the server, so the
nursery block will wait forever for it to exit.

To avoid this, we should cancel the nursery at the end of the test:

Let's cross our fingers and hope no-one else is using this port...
PORT = 14923

Don't copy this -- we can do better
async def test_attempt_2():
 async with trio.open_nursery() as nursery:
 try:
 # Start server running in the background
 nursery.start_soon(
 partial(trio.serve_tcp, echo_server_handler, port=PORT)
)

 # Connect to the server.
 echo_client = await trio.open_tcp_stream("127.0.0.1", PORT)
 # Send some test data, and check that it gets echoed back
 async with echo_client:
 for test_byte in [b"a", b"b", b"c"]:
 await echo_client.send_all(test_byte)
 assert await echo_client.receive_some(1) == test_byte
 finally:
 nursery.cancel_scope.cancel()

In fact, this pattern is so common, that pytest-trio provides a
handy nursery fixture to let you skip the boilerplate. Just
add nursery to your test function arguments, and pytest-trio will
open a nursery, pass it in to your function, and then cancel it for
you afterwards:

Let's cross our fingers and hope no-one else is using this port...
PORT = 14923

Don't copy this -- we can do better
async def test_attempt_3(nursery):
 # Start server running in the background
 nursery.start_soon(
 partial(trio.serve_tcp, echo_server_handler, port=PORT)
)

 # Connect to the server.
 echo_client = await trio.open_tcp_stream("127.0.0.1", PORT)
 # Send some test data, and check that it gets echoed back
 async with echo_client:
 for test_byte in [b"a", b"b", b"c"]:
 await echo_client.send_all(test_byte)
 assert await echo_client.receive_some(1) == test_byte

Next problem: we have a race condition. We spawn a background task to
call serve_tcp, and then immediately try to connect to that
server. Sometimes this will work fine. But it takes a little while for
the server to start up and be ready to accept connections – so other
times, randomly, our connection attempt will happen too quickly, and
error out. After all – nursery.start_soon only promises that the
task will be started soon, not that it has actually happened. So this
test will be flaky, and flaky tests are the worst.

Fortunately, Trio makes this easy to solve, by switching to using
await nursery.start(...). You can read its docs for full details [https://trio.readthedocs.io/en/latest/reference-core.html#trio.The%20nursery%20interface.start],
but basically the idea is that both nursery.start_soon(...) and
await nursery.start(...) create background tasks, but only
start waits for the new task to finish getting itself set up. This
requires some cooperation from the background task: it has to notify
nursery.start when it’s ready. Fortunately, trio.serve_tcp() [https://trio.readthedocs.io/en/stable/reference-io.html#trio.serve_tcp]
already knows how to cooperate with nursery.start, so we can
write:

Let's cross our fingers and hope no-one else is using this port...
PORT = 14923

Don't copy this -- we can do better
async def test_attempt_4(nursery):
 # Start server running in the background
 # AND wait for it to finish starting up before continuing
 await nursery.start(
 partial(trio.serve_tcp, echo_server_handler, port=PORT)
)

 # Connect to the server
 echo_client = await trio.open_tcp_stream("127.0.0.1", PORT)
 async with echo_client:
 for test_byte in [b"a", b"b", b"c"]:
 await echo_client.send_all(test_byte)
 assert await echo_client.receive_some(1) == test_byte

That solves our race condition. Next issue: hardcoding the port number
like this is a bad idea, because port numbers are a machine-wide
resource, so if we’re unlucky some other program might already be
using it. What we really want to do is to tell serve_tcp() [https://trio.readthedocs.io/en/stable/reference-io.html#trio.serve_tcp]
to pick a random port that no-one else is using. It turns out that
this is easy: if you request port 0, then the operating system will
pick an unused one for you automatically. Problem solved!

But wait… if the operating system is picking the port for us, how do
we know figure out which one it picked, so we can connect to it later?

Well, there’s no way to predict the port ahead of time. But after
serve_tcp() [https://trio.readthedocs.io/en/stable/reference-io.html#trio.serve_tcp] has opened a port, it can check and see what
it got. So we need some way to pass this data back out of
serve_tcp() [https://trio.readthedocs.io/en/stable/reference-io.html#trio.serve_tcp]. Fortunately, nursery.start handles this
too: it lets the task pass out a piece of data after it has started. And
it just so happens that what serve_tcp() [https://trio.readthedocs.io/en/stable/reference-io.html#trio.serve_tcp] passes out is a
list of SocketListener [https://trio.readthedocs.io/en/stable/reference-io.html#trio.SocketListener] objects. And there’s a handy
function called trio.testing.open_stream_to_socket_listener() [https://trio.readthedocs.io/en/stable/reference-testing.html#trio.testing.open_stream_to_socket_listener]
that can take a SocketListener [https://trio.readthedocs.io/en/stable/reference-io.html#trio.SocketListener] and make a connection to
it.

Putting it all together:

from trio.testing import open_stream_to_socket_listener

Don't copy this -- it finally works, but we can still do better!
async def test_attempt_5(nursery):
 # Start server running in the background
 # AND wait for it to finish starting up before continuing
 # AND find out where it's actually listening
 listeners = await nursery.start(
 partial(trio.serve_tcp, echo_server_handler, port=0)
)

 # Connect to the server.
 # There might be multiple listeners (example: IPv4 and
 # IPv6), but we don't care which one we connect to, so we
 # just use the first.
 echo_client = await open_stream_to_socket_listener(listeners[0])
 async with echo_client:
 for test_byte in [b"a", b"b", b"c"]:
 await echo_client.send_all(test_byte)
 assert await echo_client.receive_some(1) == test_byte

Now, this works – but there’s still a lot of boilerplate. Remember, we
need to write lots of tests for this server, and we don’t want to have
to copy-paste all that stuff into every test. Let’s factor out the
setup into a fixture:

@pytest.fixture
async def echo_client(nursery):
 listeners = await nursery.start(
 partial(trio.serve_tcp, echo_server_handler, port=0)
)
 echo_client = await open_stream_to_socket_listener(listeners[0])
 async with echo_client:
 yield echo_client

And now in tests, all we have to do is request the echo_client
fixture, and we get a background server and a client stream connected
to it. So here’s our complete, final version:

Final version -- copy this!
from functools import partial
import pytest
import trio
from trio.testing import open_stream_to_socket_listener

The code being tested:
async def echo_server_handler(stream):
 while True:
 data = await stream.receive_some(1000)
 if not data:
 break
 await stream.send_all(data)

The fixture:
@pytest.fixture
async def echo_client(nursery):
 listeners = await nursery.start(
 partial(trio.serve_tcp, echo_server_handler, port=0)
)
 echo_client = await open_stream_to_socket_listener(listeners[0])
 async with echo_client:
 yield echo_client

A test using the fixture:
async def test_final(echo_client):
 for test_byte in [b"a", b"b", b"c"]:
 await echo_client.send_all(test_byte)
 assert await echo_client.receive_some(1) == test_byte

No hangs, no race conditions, simple, clean, and reusable.

Reference

Trio mode

Most users will want to enable “Trio mode”. Without Trio mode:

	Pytest-trio only handles tests that have been decorated with
@pytest.mark.trio

	Pytest-trio only handles fixtures if they’re async and used by a
test that’s decorated with @pytest.mark.trio, or if they’re
decorated with @pytest_trio.trio_fixture (instead of
@pytest.fixture).

When Trio mode is enabled, two extra things happen:

	Async tests automatically have the trio mark added, so you don’t
have to do it yourself.

	Async fixtures using @pytest.fixture automatically get converted
to Trio fixtures. (The main effect of this is that it helps you
catch mistakes like using an async fixture with a non-async
test.)

There are two ways to enable Trio mode.

The first option is to use a pytest configuration file. The exact
rules for how pytest finds configuration files are a bit complicated [https://docs.pytest.org/en/latest/customize.html], but you want to
end up with something like:

pytest.ini
[pytest]
trio_mode = true

The second option is use a conftest.py file. Inside your tests
directory, create a file called conftest.py, with the following
contents:

conftest.py
from pytest_trio.enable_trio_mode import *

This does exactly the same thing as setting trio_mode = true in
pytest.ini, except for two things:

	Some people like to ship their tests as part of their library, so
they (or their users) can test the final installed software by
running pytest --pyargs PACKAGENAME. In this mode,
pytest.ini files don’t work, but conftest.py files do.

	Enabling Trio mode in pytest.ini always enables it globally for
your entire testsuite. Enabling it in conftest.py only enables
it for test files that are in the same directory as the
conftest.py, or its subdirectories.

If you have software that uses multiple async libraries, then you can
use conftest.py to enable Trio mode for just the part of your
testsuite that uses Trio; or, if you need even finer-grained control,
you can leave Trio mode disabled and use @pytest.mark.trio
explicitly on all your Trio tests.

Trio fixtures

Normally, pytest runs fixture code before starting the test, and
teardown code afterwards. For technical reasons, we can’t wrap this
whole process in trio.run() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.run] – only the test itself. As a
workaround, pytest-trio introduces the concept of a “Trio fixture”,
which acts like a normal fixture for most purposes, but actually does
the setup and teardown inside the test’s call to trio.run() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.run].

The following fixtures are treated as Trio fixtures:

	Any function decorated with @pytest_trio.trio_fixture.

	Any async function decorated with @pytest.fixture, if
Trio mode is enabled or this fixture is being requested by a Trio
test.

	Any fixture which depends on a Trio fixture.

The most notable difference between regular fixtures and Trio fixtures
is that regular fixtures can’t use Trio APIs, but Trio fixtures can.
Most of the time you don’t need to worry about this, because you
normally only call Trio APIs from async functions, and when Trio mode
is enabled, all async fixtures are automatically Trio fixtures.
However, if for some reason you do want to use Trio APIs from a
synchronous fixture, then you’ll have to use
@pytest_trio.trio_fixture:

This fixture is not very useful
But it is an example where @pytest.fixture doesn't work
@pytest_trio.trio_fixture
def trio_time():
 return trio.current_time()

Only Trio tests can use Trio fixtures. If you have a regular
(synchronous) test that tries to use a Trio fixture, then that’s an
error.

And finally, regular fixtures can be scoped to the test, class,
module, or session [https://docs.pytest.org/en/latest/fixture.html#scope-sharing-a-fixture-instance-across-tests-in-a-class-module-or-session],
but Trio fixtures must be test scoped. Class, module, and session
scope are not supported.

An important note about yield fixtures

Like any pytest fixture, Trio fixtures can contain both setup and
teardown code separated by a yield:

@pytest.fixture
async def my_fixture():
 ... setup code ...
 yield
 ... teardown code ...

When pytest-trio executes this fixture, it creates a new task, and
runs the setup code until it reaches the yield. Then the fixture’s
task goes to sleep. Once the test has finished, the fixture task wakes
up again and resumes at the yield, so it can execute the teardown
code.

So the yield in a fixture is sort of like calling await
wait_for_test_to_finish(). And in Trio, any await-able
operation can be cancelled. For example, we could put a timeout on the
yield:

@pytest.fixture
async def my_fixture():
 ... setup code ...
 with trio.move_on_after(5):
 yield # this yield gets cancelled after 5 seconds
 ... teardown code ...

Now if the test takes more than 5 seconds to execute, this fixture
will cancel the yield.

That’s kind of a strange thing to do, but there’s another version of
this that’s extremely common. Suppose your fixture spawns a background
task, and then the background task raises an exception. Whenever a
background task raises an exception, it automatically cancels
everything inside the nursery’s scope – which includes our yield:

@pytest.fixture
async def my_fixture(nursery):
 nursery.start_soon(function_that_raises_exception)
 yield # this yield gets cancelled after the background task crashes
 ... teardown code ...

If you use fixtures with background tasks, you’ll probably end up
cancelling one of these yields sooner or later. So what happens
if the yield gets cancelled?

First, pytest-trio assumes that something has gone wrong and there’s
no point in continuing the test. If the top-level test function is
running, then it cancels it.

Then, pytest-trio waits for the test function to finish, and
then begins tearing down fixtures as normal.

During this teardown process, it will eventually reach the fixture
that cancelled its yield. This fixture gets resumed to execute its
teardown logic, but with a special twist: since the yield was
cancelled, the yield raises trio.Cancelled [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Cancelled].

Now, here’s the punchline: this means that in our examples above, the
teardown code might not be executed at all! This is different from
how pytest fixtures normally work. Normally, the yield in a
pytest fixture never raises an exception, so you can be certain that
any code you put after it will execute as normal. But if you have a
fixture with background tasks, and they crash, then your yield
might raise an exception, and Python will skip executing the code
after the yield.

In our experience, most fixtures are fine with this, and it prevents
some weird problems [https://github.com/python-trio/pytest-trio/issues/75] that can
happen otherwise. But it’s something to be aware of.

If you have a fixture where the yield might be cancelled but you
still need to run teardown code, then you can use a finally
block:

@pytest.fixture
async def my_fixture(nursery):
 nursery.start_soon(function_that_crashes)
 try:
 # This yield could be cancelled...
 yield
 finally:
 # But this code will run anyway
 ... teardown code ...

(But, watch out: the teardown code is still running in a cancelled
context, so if it has any awaits it could raise
trio.Cancelled [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Cancelled] again.)

Or if you use with to handle teardown, then you don’t have to
worry about this because with blocks always perform cleanup even
if there’s an exception:

@pytest.fixture
async def my_fixture(nursery):
 with get_obj_that_must_be_torn_down() as obj:
 nursery.start_soon(function_that_crashes, obj)
 # This could raise trio.Cancelled...
 # ...but that's OK, the 'with' block will still tear down 'obj'
 yield obj

Concurrent setup/teardown

If your test uses multiple fixtures, then for speed, pytest-trio will
try to run their setup and teardown code concurrently whenever this is
possible while respecting the fixture dependencies.

Here’s an example, where a test depends on fix_b and fix_c,
and these both depend on fix_a:

@trio_fixture
def fix_a():
 ...

@trio_fixture
def fix_b(fix_a):
 ...

@trio_fixture
def fix_c(fix_a):
 ...

@pytest.mark.trio
async def test_example(fix_b, fix_c):
 ...

When running test_example, pytest-trio will perform the following
sequence of actions:

	Set up fix_a

	Set up fix_b and fix_c, concurrently.

	Run the test.

	Tear down fix_b and fix_c, concurrently.

	Tear down fix_a.

We’re seeking feedback [https://github.com/python-trio/pytest-trio/issues/57] on whether
this feature’s benefits outweigh its negatives.

Handling of ContextVars

The contextvars [https://docs.python.org/3/library/contextvars.html#module-contextvars] module lets you create
ContextVar [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar] objects to represent task-local
variables. Normally, in Trio, each task gets its own
Context [https://docs.python.org/3/library/contextvars.html#contextvars.Context], so that changes to
ContextVar [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar] objects are only visible inside the
task that performs them. But pytest-trio overrides this, and for each
test it uses a single Context [https://docs.python.org/3/library/contextvars.html#contextvars.Context] which is shared by
all fixtures and the test function itself.

The benefit of this is that you can set
ContextVar [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar] values inside a fixture, and your
settings will be visible in dependent fixtures and the test itself.
For example, trio-asyncio [https://trio-asyncio.readthedocs.io/]
uses a ContextVar [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar] to hold the current asyncio
loop object, so this lets you open a loop inside a fixture and then
use it inside other fixtures or the test itself.

The downside is that if two fixtures are run concurrently (see
previous section), and both mutate the same
ContextVar [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar], then there will be a race condition
and the the final value will be unpredictable. If you make one fixture
depend on the other, then this will force an ordering and make the
final value predictable again.

Built-in fixtures

These fixtures are automatically available to any code using
pytest-trio.

	
autojump_clock

	A trio.testing.MockClock [https://trio.readthedocs.io/en/stable/reference-testing.html#trio.testing.MockClock], configured with rate=0,
autojump_threshold=0.

	
mock_clock

	A trio.testing.MockClock [https://trio.readthedocs.io/en/stable/reference-testing.html#trio.testing.MockClock], with its default configuration
(rate=0, autojump_threshold=inf).

What makes these particularly useful is that whenever pytest-trio runs
a test, it checks the fixtures to see if one of them is a
trio.abc.Clock [https://trio.readthedocs.io/en/stable/reference-core.html#trio.abc.Clock] object. If so, it passes that object to
trio.run() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.run]. So if your test requests one of these fixtures, it
automatically uses that clock.

If you implement your own Clock [https://trio.readthedocs.io/en/stable/reference-core.html#trio.abc.Clock], and implement a
fixture that returns it, then it will work the same way.

Of course, like any pytest fixture, you also get the actual object
available. For example, you can call
jump() [https://trio.readthedocs.io/en/stable/reference-testing.html#trio.testing.MockClock.jump]:

async def test_time_travel(mock_clock):
 assert trio.current_time() == 0
 mock_clock.jump(10)
 assert trio.current_time() == 10

	
nursery

	A nursery created and managed by pytest-trio itself, which
surrounds the test/fixture that requested it, and is automatically
cancelled after the test/fixture completes. Basically, these are
equivalent:

Boring way
async def test_with_background_task():
 async with trio.open_nursery() as nursery:
 try:
 ...
 finally:
 nursery.cancel_scope.cancel()

Fancy way
async def test_with_background_task(nursery):
 ...

For a fixture, the cancellation always happens after the fixture
completes its teardown phase. (Or if it doesn’t have a teardown
phase, then the cancellation happens after the teardown phase
would have happened.)

This fixture is even more magical than most pytest fixtures,
because if it gets requested several times within the same test,
then it creates multiple nurseries, one for each fixture/test that
requested it.

See Running a background server from a fixture for an example of how this can be
used.

Integration with the Hypothesis library

There isn’t too much to say here, since the obvious thing just works:

from hypothesis import given
import hypothesis.strategies as st

@given(st.binary())
async def test_trio_and_hypothesis(data):
 ...

Under the hood, this requires some coordination between Hypothesis and
pytest-trio. Hypothesis runs your test multiple times with different
examples of random data. For each example, pytest-trio calls
trio.run() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.run] again (so you get a fresh clean Trio environment),
sets up any Trio fixtures, runs the actual test, and then tears down
any Trio fixtures. Notice that this is a bit different than regular
pytest fixtures, which are instantiated once and then re-used for all [https://github.com/pytest-dev/pytest/issues/916]. Most of the time
this shouldn’t matter (and is probably what you want anyway [https://github.com/HypothesisWorks/hypothesis/issues/377]), but in
some unusual cases it could surprise you. And this only applies to
Trio fixtures – if a Trio test uses a mix of regular fixtures and Trio
fixtures, then the regular fixtures will be reused, while the Trio
fixtures will be repeatedly reinstantiated.

Also, pytest-trio only handles @given-based tests. If you want to
write stateful tests [https://hypothesis.readthedocs.io/en/latest/stateful.html] for
Trio-based libraries, then check out hypothesis-trio [https://github.com/python-trio/hypothesis-trio].

Release history

pytest-trio 0.6.0 (2020-05-20)

Features

	Incompatible change: if you use yield inside a Trio fixture, and
the yield gets cancelled (for example, due to a background task
crashing), then the yield will now raise trio.Cancelled [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Cancelled].
See An important note about yield fixtures for details. Also, in this same case,
pytest-trio will now reliably mark the test as failed, even if the
fixture doesn’t go on to raise an exception. (#75 [https://github.com/python-trio/pytest-trio/issues/75])

	Updated for compatibility with Trio v0.15.0.

pytest-trio 0.5.2 (2019-02-13)

Features

	pytest-trio now makes the Trio scheduler deterministic while running
inside a Hypothesis test. Hopefully you won’t see any change, but if
you had scheduler-dependent bugs Hypothesis will be more effective now. (#73 [https://github.com/python-trio/pytest-trio/issues/73])

	Updated for compatibility with trio v0.11.0.

pytest-trio 0.5.1 (2018-09-28)

Bugfixes

	The pytest 3.8.1 release broke pytest-trio’s handling of trio tests
defined as class methods. We fixed it again. (#64 [https://github.com/python-trio/pytest-trio/issues/64])

pytest-trio 0.5.0 (2018-08-26)

This is a major release, including a rewrite of large portions of the
internals. We believe it should be backwards compatible with existing
projects. Major new features include:

	“trio mode”: no more writing @pytest.mark.trio everywhere!

	it’s now safe to use nurseries inside fixtures (#55 [https://github.com/python-trio/pytest-trio/issues/55])

	new @trio_fixture decorator to explicitly mark a fixture as a
trio fixture

	a number of easy-to-make mistakes are now caught and raise
informative errors

	the nursery fixture is now 87% more magical

For more details, see the manual. Oh right, speaking of which: we
finally have a manual! You should read it.

pytest-trio 0.4.2 (2018-06-29)

Features

	pytest-trio now integrates with Hypothesis [https://hypothesis.readthedocs.io] to support @given on async tests
using Trio. (#42 [https://github.com/python-trio/pytest-trio/issues/42])

pytest-trio 0.4.1 (2018-04-14)

No significant changes.

pytest-trio 0.4.0 (2018-04-14)

	Fix compatibility with trio 0.4.0 (#25 [https://github.com/python-trio/pytest-trio/pull/36])

pytest-trio 0.3.0 (2018-01-03)

Features

	Add nursery fixture and improve teardown handling for yield fixture (#25 [https://github.com/python-trio/pytest-trio/issues/25])

pytest-trio 0.2.0 (2017-12-15)

	Heavy improvements, add async yield fixture, fix bugs, add tests etc. (#17 [https://github.com/python-trio/pytest-trio/issues/17])

Deprecations and Removals

	Remove unused_tcp_port{,_factory} fixtures (#15 [https://github.com/python-trio/pytest-trio/issues/15])

pytest-trio 0.1.1 (2017-12-08)

Disable intersphinx for trio (cause crash in CI for the moment due to 404
in readthedoc).

pytest-trio 0.1.0 (2017-12-08)

Initial release.

Index

 A
 | M
 | N

A

 	
 	autojump_clock (built-in variable)

M

 	
 	mock_clock (built-in variable)

N

 	
 	nursery (built-in variable)

 nav.xhtml

 Table of Contents

 		
 pytest-trio: Pytest plugin for trio

 		
 Quickstart

 		
 Enabling Trio mode and running your first async tests

 		
 Trio’s magic autojump clock

 		
 Async fixtures

 		
 Running a background server from a fixture

 		
 Reference

 		
 Trio mode

 		
 Trio fixtures

 		
 An important note about yield fixtures

 		
 Concurrent setup/teardown

 		
 Handling of ContextVars

 		
 Built-in fixtures

 		
 Integration with the Hypothesis library

 		
 Release history

 		
 pytest-trio 0.6.0 (2020-05-20)

 		
 Features

 		
 pytest-trio 0.5.2 (2019-02-13)

 		
 Features

 		
 pytest-trio 0.5.1 (2018-09-28)

 		
 Bugfixes

 		
 pytest-trio 0.5.0 (2018-08-26)

 		
 pytest-trio 0.4.2 (2018-06-29)

 		
 Features

 		
 pytest-trio 0.4.1 (2018-04-14)

 		
 pytest-trio 0.4.0 (2018-04-14)

 		
 pytest-trio 0.3.0 (2018-01-03)

 		
 Features

 		
 pytest-trio 0.2.0 (2017-12-15)

 		
 Deprecations and Removals

 		
 pytest-trio 0.1.1 (2017-12-08)

 		
 pytest-trio 0.1.0 (2017-12-08)

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

